Pancyclism in hamiltonian graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On pancyclism in hamiltonian graphs

We investigate the set of cycle lengths occurring in a hamiltonian graph with at least one or two vertices of large degree. We prove that in every case this set contains all the integers between 3 and some t, where t depends on the order of the graph and the degrees of vertices. c © 2002 Elsevier Science B.V. All rights reserved.

متن کامل

Pancyclism and small cycles in graphs

We first show that if a graph G of order n contains a hamiltonian path connecting two nonadjacent vertices u and v such that d(u) + d(v) ≥ n, then G is pancyclic. By using this result, we prove that if G is hamiltonian with order n ≥ 20 and if G has two nonadjacent vertices u and v such that d(u) + d(v) ≥ n + z, where z = 0 when n is odd and z = 1 otherwise, then G contains a cycle of length m ...

متن کامل

Hamiltonian Factors in Hamiltonian Graphs

Let G be a Hamiltonian graph. A factor F of G is called a Hamiltonian factor if F contains a Hamiltonian cycle. In this paper, two sufficient conditions are given, which are two neighborhood conditions for a Hamiltonian graph G to have a Hamiltonian factor. Keywords—graph, neighborhood, factor, Hamiltonian factor.

متن کامل

A note on pancyclism of highly connected graphs

Jackson and Ordaz conjectured that if the stability number (G) of a graph G is no greater than its connectivity (G) then G is pancyclic. Applying Ramsey’s theorem we prove the pancyclicity of every graph G with (G) su7ciently large with respect to (G). c © 2003 Elsevier B.V. All rights reserved. MSC: 05C38; 05C45

متن کامل

Long Cycles in Hamiltonian Graphs

We prove that if an n-vertex graph with minimum degree at least 3 contains a Hamiltonian cycle, then it contains another cycle of length n− o(n); in particular, this verifies, in an asymptotic form, a well-known conjecture due to Sheehan from 1975.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1991

ISSN: 0012-365X

DOI: 10.1016/0012-365x(91)90361-5